Google SWE Intern 2026 Online
Assessment - 20iERTE B i1¥ %

=,

Al

1[[13

GooglefEAEHKINLRHE AT, EHSoftware Engineer InternXiIf90nline Assessment L
ZEEMBIERNNEEZREEN,. AABESETHFELIHRNERMSMED, Biig
T 20 &S L IERFINRERE.

XEFMBRETHIESE., 85 FRBLE, HARFFROMIRS, ¥EMKEasyF
MediumAE, EEEEEELIEREANFEZRL. FEBLEMREBRES, SED
BERRM TIF AN PR E SN, BEKRIMERNEFFET DR RLIEE,

W E S RKFEED

ME D

e Easy: 8iEZH (40%)
o Medium: 123EZE (60%)

MARES

o BUAMFITEH: BBHE

o IIARMES: 48HE

o WisHHHIBEMEN: 38R
o EJIMS5iE: 3EAE

o EhASHIXIEM: 2E=E

Problem 1: Two Sum (Easy)

Problem Statement

Given an array of integers nums and an integer target, return indices of the
two

numbers such that they add up to target.

You may assume that each input would have exactly one solution, and you may not
use the same element twice.

You can return the answer in any order.

Example 1:

Input: nums = [2,7,11,15], target = 9

Output: [0,1]

Explanation: Because nums[0] + nums[1l] == 9, we return [0, 1].

Example 2:
Input: nums = [3,2,4], target = 6
Output: [1,2]

Example 3:
Input: nums = [3,3], target = 6
Output: [0,1]

Constraints:

- 2 <= nums.length <= 1074

- -10A9 <= nums[i] <= 1079

- -10N9 <= target <= 1079

- Only one valid answer exists.

fRRABER (Solution Analysis)

XELeetCodeF—, BERALHNMBFRNVAIE. RRABEKER, BZEREXNE
B2 2 E IRV IRRR,

[|HhEE. - NERKHBHAMBNENA M EFAS - NEAERE: O(n?) -TRERE:
0(1)

MERMKE:. -EARARFHEESENNIHFMERS| - W TFHAHF, Tk target -
current FEERERF - BHEERE: O(n) - TRIEHRE: O(n)

Xt33:M (Code Implementation)

def twoSum(nums, target):

miin

Find two numbers that add up to target.

Args:
nums: List[int] - Array of integers
target: int - Target sum

Returns:

List[int] - Indices of the two numbers
mirrn
Hash map to store number -> index mapping
num_to_index = {}

for i, num in enumerate(nums):
complement = target - num

Check if complement exists in hash map
if complement in num_to_index:
return [num_to_index[complement], 1i]

Store current number and its index
num_to_index[num] = i

Should never reach here given problem constraints
return []

Alternative implementation with more explicit logic
def twoSumVerbose(nums, target):

min

More verbose implementation for better understanding.

min

seen = {}

for current_index, current_num in enumerate(nums):
needed = target - current_num

if needed in seen:

return [seen[needed], current_index]
else:

seen[current_num] = current_index

return []

Test cases

test_cases = [
(2, 7, 11, 15], 9), # [0, 1]
(r3, 2, 41,), # 11, 2]
([3, 31, 6), # [0, 1]
(['11 '21 '3/ '41 '5]1 '8) # [2/ 4]

]

for nums, target in test_cases:

result = twoSum(nums.copy(), target)
print(f"nums={nums}, target={target} -> {result}")

X§E£ = (Key Points)
1. igFRRMA: BRNA AR A RN EEX
2. —RiEH: NBEHLEN, #REETE
3ARFM: MIBH. EETEFBR

Problem 2: Valid Anagram (Easy)

Problem Statement

Given two strings s and t, return true if t is an anagram of s, and false
otherwise.

An Anagram is a word or phrase formed by rearranging the letters of a different
word or phrase, typically using all the original letters exactly once.

Example 1:
Input: s = "anagram", t = "nagaram"
Output: true

Example 2:
Input: s = "rat", t = "car"
Output: false

Constraints:

- 1 <= s.length, t.length <=5 * 1074
- s and t consist of lowercase English letters only.

R B IR (Solution Analysis)
XE—BLHNFHFREMNBERDDE, EENFRIIURSITEVER,

s
HiFRE. - BRI FRHEHFEHRESHES - HEaERE: Onlogn) - TEERE:
0(1) & O(n) (BURFHFTFZ)
FHUHHRE. - SO0t FRERESENFHIHIUER - EIREF A EREEHER - i
BEHE: O(n)-TRIERE: 0(1) (RE26MMNEFH)

Xt33:M (Code Implementation)

from collections import Counter

def isAnagram(s, t):

miin

Check if two strings are anagrams using character counting.

Args:
s: str - First string
t: str - Second string

Returns:

bool - True if anagrams, False otherwise
if len(s) !'= len(t):

return False

Count characters in both strings
return Counter(s) == Counter(t)

def isAnagramArray(s, t):

miin

Implementation using array for character counting.
More efficient for lowercase letters only.

miin

if len(s) != len(t):
return False

Array to count characters (26 lowercase letters)
char_count = [0] * 26

for i in range(len(s)):
char_countford(s[i]) - ord('a')] += 1
char_count[ord(t[i]) - ord('a')] -= 1

All counts should be zero if anagrams
return all(count == 0 for count in char_count)

def isAnagramSorting(s, t):

mirn

Simple sorting approach.

min

return sorted(s) == sorted(t)

Test cases
test_cases = [

("anagram", "nagaram"), # True
("rat", "car"), # False
("listen", "silent"), # True
("hello", "bello"), # False
("a", "ab") # False

]

for s, t in test_cases:
resultl = isAnagram(s, t)
result2 isAnagramArray(s, t)
result3 = isAnagramSorting(s, t)

print(f's="{s}", t="{t}" -> Counter: {resultl}, Array: {result2}, Sorting:
{result3}"')

X§E£ = (Key Points)
1. FHg0T: M A ERITF IR
2. B ERE: BFARAFENEREER
3. FiEh: HRFEFRENML

Problem 3: Contains Duplicate (Easy)

Problem Statement

Given an integer array nums, return true if any value appears at least twice
in
the array, and return false if every element is distinct.

Example 1:
Input: nums = [1,2,3,1]
Output: true

Example 2:
Input: nums = [1,2,3,4]
Output: false

Example 3:

Input: nums = [1,1,1,3,3,2,2,2]
Output: true

Constraints:

- 1 <= nums.length <= 1075
- -10MN9 <= nums[i] <= 1019

R B ER (Solution Analysis)

XE—EEEEG(Set) BURLEMNERE,

E5WRE. -BAHYA, BRRNAES - IRTREFETESS, HBAFEE -HEE

#*E: O(n)- =EEHE: O(n)

HiIFRRE: - cHir, ARKRERPBTRERSHER - HEERE: O(nlogn) - TEEHRE:
0(1)

Xt33:M (Code Implementation)

def containsDuplicate(nums):

miin

Check if array contains duplicates using set.

Args:
nums: List[int] - Array of integers

Returns:
bool - True if duplicates exist, False otherwise

miin

seen = set()

for num in nums:
if num in seen:
return True
seen.add(num)

return False

def containsDuplicateSet(nums):

miin

One-liner using set length comparison.

miin

return len(nums) !'= len(set(nums))

def containsDuplicateSorting(nums):

miin

Sorting approach with 0(1) extra space.

miran

nums.sort()
for i in range(1, len(nums)):
if nums[i] == nums[i-1]:
return True

return False

Test cases
test_cases = [

[1, 2, 3, 11, # True
[1, 2, 3, 4], # False
[1, 1, 1, 3, 3, 2, 2, 2], # True
[17, # False
[1] # False

for nums in test_cases:
resultl = containsDuplicate(nums.copy())
result2 = containsDuplicateSet(nums.copy())
result3 = containsDuplicateSorting(nums.copy())
print(f"nums={nums} -> Set: {resultl}, SetLen: {result2}, Sorting:
{result3}")

X§E£ = (Key Points)
1. EANA: M AESHHE—MalES
2. —1TCIBHRE: IEfRPYthonEE &R
3. FiElBtEAE: RRAENERES T

Problem 4: Maximum Subarray (Easy)

Problem Statement

Given an integer array nums, find the contiguous subarray (containing at least
one number) which has the largest sum and return its sum.

A subarray is a contiguous part of an array.

Example 1:

Input: nums = [-2,1,-3,4,-1,2,1,-5,4]

Output: 6

Explanation: [4,-1,2,1] has the largest sum = 6.

Example 2:
Input: nums = [1]
Output: 1

Example 3:

Input: nums = [5,4,-1,7,8]
Output: 23

Constraints:

- 1 <= nums.length <= 1075
- -107M4 <= nums[i] <= 1074

fRRABEE (Solution Analysis)
XEEZKadaneF%E, EoiSHIXIAVSHEN,

KadaneRiZBM: - 4P UalF AR AMN - IRIFM AR, EFAEHE - 1R
BEHNERRAE

BZEPR: 1 VGEEETRARMNAE— R 2. BHEA, BHMAFIRAM 3. NRHF1H
INFHRITTR, BTG 4. B ERRAN

Xf33:M (Code Implementation)

def maxSubArray(nums):

miin

Find maximum sum of contiguous subarray using Kadane's algorithm.

Args:
nums: List[int] - Array of integers

Returns:
int - Maximum subarray sum

min

max_sum = current_sum = nums[0Q]

for num in nums[1:]:
Either extend existing subarray or start new one
current_sum = max(num, current_sum + num)
Update global maximum
max_sum = max(max_sum, current_sum)

return max_sum

def maxSubArrayDP(nums):

miin

Dynamic programming approach with explicit DP array.
n = len(nums)

dp = [0] * n

dp[0] = nums[O]

max_sum = nums[0]

for i in range(1, n):
dp[i] = max(nums[i], dp[i-1] + nums[i])
max_sum = max(max_sum, dp[i])

return max_sum

def maxSubArrayWithIndices(nums):

mirin

Return both maximum sum and the subarray indices.
miin

max_sum = current_sum = nums[0Q]

start = end = 0

temp_start = 0

for i in range(1, len(nums)):
if current_sum < 0O:
current_sum = nums[i]
temp_start = i
else:
current_sum += nums[i]

if current_sum > max_sum:
max_sum = current_sum
start = temp_start
end = 1

return max_sum, nums[start:end+1]

Test cases

test_cases = [
['21 1! '31 41 '11 21 11 '51 4]! # 6

[1]1, # 1
[5, 4, -1, 7, 8], # 23
[-11, # -1
[-2, -1] # -1

for nums in test_cases:
resultl = maxSubArray(nums)
result2 = maxSubArrayDP(nums)
max_sum, subarray = maxSubArrayWithIndices(nums)
print(f"nums={nums}")
print(f"Kadane: {resultl}, DP: {result2}, With indices: {max_sum}
{subarray}\n")

X{EE = (Key Points)
1. Kadane®i%: BEEZ O BAAFI IR
2. EhAKIR: RS E XA TE 512
3. A E L IE: FHARMIES A BHIER

Problem 5: Merge Two Sorted Lists (Easy)

Problem Statement

You are given the heads of two sorted linked lists 1listl and list2.

Merge the two lists in a one sorted list. The list should be made by splicing
together the nodes of the first two lists.

Return the head of the merged linked list.
Example 1:

Input: list1l [1,2,4], list2 = [1,3,4]
Output: [1,1,2,3,4,4]

Example 2:

Input: listl = [], list2 = []
Output: []

Example 3:

Input: listl = [], list2 = [0]
Output: [0]

Constraints:

- The number of nodes in both lists is in the range [0, 50].
- -100 <= Node.val <= 100
- Both listl and list2 are sorted in non-decreasing order.

R ER (Solution Analysis)
XEe—BELHNERIZETE, ZEWNBRREFIZENEE,

ERBEE. - EANEH2IEER N ER - WRYEFMTRE, EFBRNMAERER -
B iEst, EEEHE—TMERAT - RRRERERERIERER

WAL - WA HERKT R - EFERRIEN EIT R - BIFNIERIRE D

Xf33:M (Code Implementation)

Definition for singly-linked list
class ListNode:
def __init_ (self, val=0, next=None):
self.val = val
self.next = next

def __repr__(self):
result = []
current = self
while current:
result.append(str(current.val))
current = current.next
return " -> ".join(result)

def mergeTwolLists(listl, list2):

mirin

Merge two sorted linked lists iteratively.

Args:
listl: ListNode - Head of first sorted 1list
list2: ListNode - Head of second sorted 1list

Returns:

ListNode - Head of merged sorted 1list
mirirn
Create dummy head for easier manipulation
dummy = ListNode(0)
current = dummy

Merge while both lists have nodes
while listl and list2:
if listil.val <= list2.val:
current.next = list1l
listd = listd.next
else:
current.next = list2
list2 = 1list2.next
current = current.next

Append remaining nodes
current.next = listl or list2

return dummy.next

def mergeTwolListsRecursive(listl, 1list2):

miin

Recursive solution for merging two sorted 1ists.

miin

if not listi:
return list2

if not list2:
return listil

if listl.val <= list2.val:
listl.next = mergeTwoListsRecursive(listl.next, 1list2)
return listi

else:
list2.next = mergeTwolListsRecursive(listl, list2.next)

return list2

Helper function to create linked 1list from array
def create_linked_list(arr):
"""Create linked list from array."""
if not arr:
return None

head = ListNode(arr[0])

current = head

for val in arr[1:]:
current.next = ListNode(val)
current = current.next

return head

Test cases
test_cases = [

([1, 2, 4], [1, 3, 4]), #[1,1,2,3,4,4]
(L1, [1), #[]
(r1, ref), # [0]
([x, 2, 3], [4, 5, 6]) #[1,2,3,4,5,6]

for arrl, arr2 in test_cases:
listl = create_linked_list(arril)

list2 = create_linked_list(arr2)

Test iterative solution

result_iter = mergeTwoLists(listl, list2)

Recreate 1lists for recursive test

listl = create_linked_list(arril)

list2 = create_linked_list(arr2)

result_rec = mergeTwolListsRecursive(listl, 1list2)
print(f"Input: {arri1} + {arr2}")

print(f"Iterative: {result_iter}")
print(f"Recursive: {result_rec}\n")

X§#E = (Key Points)

1. GERIZ(E: IBRERAVBEAIRENIE 155D
2. IAREFMH: DIETHERNER
3. YL IRAREEAIRHERR

Problem 6: Best Time to Buy and Sell Stock (Easy)

Problem Statement

You are given an array prices where prices[i] is the price of a given stock on
day 1i.

You want to maximize your profit by choosing a single day to buy one stock and
choosing a different day in the future to sell that stock.

Return the maximum profit you can achieve from this transaction. If you cannot
achieve any profit, return 0.

Example 1:
Input: prices = [7,1,5,3,6,4]
Output: 5

Explanation: Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit =
6-1 = 5.

Example 2:
Input: prices = [7,6,4,3,1]
Output: 0

Explanation: In this case, no transactions are done and the max profit = 0.

Constraints:
- 1 <= prices.length <= 1025
- 0 <= prices[i] <= 1074

fRBRBER (Solution Analysis)
XE—EZHNFOEZEHAR, ZENRMKIRAVIERE,
BB - HPEIERIANLENREENN - ITESXRZHFE, EWRsATE

BEPR. 1 B URBENBAE—KNE 2. BRENEHRA 3. ERRENE 4. THEHRE
HEvFE, BREAFE

Xt33:M (Code Implementation)

def maxProfit(prices):

miin

Find maximum profit from single buy-sell transaction.

Args:
prices: List[int] - Array of stock prices

Returns:
int - Maximum profit

mirrn

if not prices or len(prices) < 2:
return 0

min_price = prices[0]
max_profit = 0

for price in prices[1:]:
Update minimum price seen so far
min_price = min(min_price, price)
Calculate profit if selling today
profit = price - min_price
Update maximum profit
max_profit = max(max_profit, profit)

return max_profit

def maxProfitDP(prices):

miin

Dynamic programming approach.
miin
if not prices:

return 0

dp[i][0] = max profit on day i when not holding stock
dp[i][1] max profit on day i when holding stock
hold = -prices[0] # Bought stock on day 0

sold = 0 # No stock on day 0

for price in prices[1:]:
Either keep not holding, or sell today
new_sold = max(sold, hold + price)
Either keep holding, or buy today
new_hold = max(hold, -price) # Can only buy once

sold, hold = new_sold, new_hold
return sold

Test cases
test_cases

[

[7, 1, 5, 3, 6, 41, # 5
[7, 6, 4, 3, 1], # 0
1, 2, 3, 4, 51, # 4
[2, 4, 1], # 2
[1] # 0

]

for prices in test_cases:

resultl = maxProfit(prices)
result2 = maxProfitDP(prices)
print(f"prices={prices} -> Greedy: {resultl}, DP: {result2}")

X§E£ = (Key Points)
1. TR ERIEAEN, EReREH
2. =B REERH —REA
3. IREYHP: iR RENEINRATE

Problem 7: Valid Palindrome (Easy)

Problem Statement

A phrase is a palindrome if, after converting all uppercase letters into
lowercase

letters and removing all non-alphanumeric characters, it reads the same forward
and backward. Alphanumeric characters include letters and numbers.

Given a string s, return true if it is a palindrome, or false otherwise.

Example 1:

Input: s = "A man, a plan, a canal: Panama"

Output: true

Explanation: "amanaplanacanalpanama" is a palindrome.

Example 2:

Input: s = "race a car"

Output: false

Explanation: "raceacar" is not a palindrome.

Example 3:

Input: s =" "

Output: true

Explanation: s is an empty string "" after removing non-alphanumeric
characters.

Constraints:
- 1 <= s.length <= 2 * 1015
- s consists only of printable ASCII characters.

fRBBER (Solution Analysis)

XE—EEHIEHNFFRLAIETE,

WEHRE . - ERAEERMNMES NFRBEMIKAPEIZE - BhdIEFBRFFR - LERX
NFFIEEERE (BBANE)

FEREE: - R BHAIEFERFFAAHENNE - ARFIRGIEENFHHEEE 20
X

Xf33:M (Code Implementation)

def isPalindrome(s):

miin

Check if string is palindrome using two pointers.

Args:
s: str - Input string

Returns:
bool - True if palindrome, False otherwise

miin

left, right = 0, len(s) - 1

while left < right:
Skip non-alphanumeric characters from left
while left < right and not s[left].isalnum():
left += 1

Skip non-alphanumeric characters from right
while left < right and not s[right].isalnum():
right -= 1

Compare characters (case insensitive)
if s[left].lower() !'= s[right].lower():
return False

left += 1
right -= 1

return True

def isPalindromePreprocess(s):

min

Preprocess string then check palindrome.
Filter and convert to lowercase
cleaned = ''.join(char.lower() for char in s if char.isalnum())

Check 1if cleaned string is palindrome
return cleaned == cleaned[::-1]

def isPalindromeRecursive(s):

miin

Recursive solution for palindrome check.

miin

def is_palindrome_helper(left, right):
if left >= right:
return True

Skip non-alphanumeric from left
if not s[left].isalnum():
return is_palindrome_helper(left + 1, right)

Skip non-alphanumeric from right
if not s[right].isalnum():
return is_palindrome_helper(left, right - 1)

Compare current characters
if s[left].lower() !'= s[right].lower():

return False

return is_palindrome_helper(left + 1, right - 1)

return is_palindrome_helper (0, len(s) - 1)

Test cases
test_cases = [
"A man, a plan, a canal: Panama", # True

"race a car'", # False
", # True
"Madam", # True
"No 'x' in Nixon" # True

for s in test_cases:
resultl = isPalindrome(s)
result2 isPalindromePreprocess(s)
result3 = isPalindromeRecursive(s)
print(f's="{s}"")

print(f'Two pointers: {resultl}, Preprocess:

{result3}\n')

X§#%E = (Key Points)
1. WIEEHHEIT: MARIRFA A BB RIRIE HIER
2. FRE: FRMEXNENIEFBRFFR
IBREM: TFFEMBFRHBIE

{result2},

Recursive:

Problem 8: Climbing Stairs (Easy)

Problem Statement

You are climbing a staircase. It takes n steps to reach the top.

Each time you can either climb 1 or 2 steps. In how many distinct ways can you
climb to the top?

Example 1:
Input: n = 2
Output: 2

Explanation: There are two ways to climb to the top.
1. 1 step + 1 step
2. 2 steps

Example 2:

Input: n = 3

Output: 3

Explanation: There are three ways to climb to the top.
1. 1 step + 1 step + 1 step

2. 1 step + 2 steps

3. 2 steps + 1 step

constraints:
-1 <= n <= 45

fRBRBER (Solution Analysis)
XE—ELHNEMYINTRE, KR LEMEERARET,

BEXR: - f(n) = f(n-1) + f(n-2) - FEEnMBIGEER = BIAE (n-1)FBY 7 7R % +
FASE (n-2) BV 7 752K

HERER: - f(1) = 1 (RE—MAEE: E1P) - f(2) = 2 (WMAEE: E1+1THE2
Z)

Xt53:M (Code Implementation)

def climbStairs(n):

miin

Calculate number of ways to climb stairs using DP.

Args:
n: int - Number of stairs

Returns:

int - Number of distinct ways
mirin
if n <= 2:

return n

Use two variables instead of array for 0(1) space
prev2 1 # f(1)
previ 2 # f(2)

for i in range(3, n + 1):
current = prevl + prev2
prev2 = prevl
prevl = current

return prevl

def climbStairsDP(n):

min

Traditional DP approach with array.

miin

if n <= 2:
return n

dp = [0] * (n + 1)
dp[1] = 1
dp[2] = 2

for i in range(3, n + 1):
dp[i] = dp[i-1] + dp[i-2]

return dp[n]

def climbStairsRecursive(n):

miin

Recursive solution with memoization.

memo = {}
def climb(n):

if n in memo:
return memo[n]

if n <= 2:
return n

memo[n] = climb(n-1) + climb(n-2)
return memo[n]

return climb(n)

def climbStairsMath(n):

mirn

Mathematical solution using Fibonacci formula.

min

import math
sqrt5 = math.sqrt(5)

phi = (1 + sqrth5) / 2
psi = (1 - sqrth5) / 2

return int((phi**(n+1) - psi**(n+1)) / sqrtbh)

Test cases
test_cases = [1, 2, 3, 4, 5, 10, 20]

for n in test_cases:

resultl = climbStairs(n)

result2 = climbStairsDP(n)
result3 = climbStairsRecursive(n)
result4 = climbStairsMath(n)

print(f"n={n} -> Optimized: {resultl}, DP: {result2}, Recursive: {result3},
Math: {result4}")

X§#%E = (Key Points)
1. hERR: BRI ESRB H 12
2. FiEfR: MO(N)LEEIO(1)
3. I BRS2EF: IR 5! n) RV AN R

Problem 9: Binary Search (Easy)

Problem Statement

Given an array of integers nums which is sorted in ascending order, and an
integer

target, write a function to search target in nums. If target exists, then
return

its index. Otherwise, return -1.

You must write an algorithm with 0(log n) runtime complexity.

Example 1:
Input: nums = [-1,0,3,5,9,12], target = 9
Output: 4

Explanation: 9 exists in nums and its index is 4

Example 2:
Input: nums = [-1,0,3,5,9,12], target = 2
Output: -1

Explanation: 2 does not exist in nums so return -1
Constraints:

- 1 <= nums.length <= 1074

- -107M4 < nums[i], target < 1074

- All the integers in nums are unique.
- nums is sorted in ascending order.

fRBIRBER (Solution Analysis)
XEZAERTELRI, BUNERENEMEE,

BERE:. -sRkitRPETRSENE - RIBCRERSENMEREE - EEHEINEI B

KR - ERAENFREM - BREHED - IR AT 24

Xt53:M (Code Implementation)

def search(nums, target):

miin

Binary search implementation.

Args:
nums: List[int] - Sorted array
target: int - Target value to search

Returns:
int - Index of target or -1 if not found

min

left, right = 0, len(nums) - 1

while left <= right:
Avoid overflow: mid = (left + right) // 2
mid = left + (right - left) // 2

if nums[mid] == target:
return mid

elif nums[mid] < target:
left = mid + 1

else:
right = mid - 1

return -1

def searchRecursive(nums, target):

miin

Recursive binary search implementation.
def binary_search(left, right):
if left > right:
return -1

mid = left + (right - left) // 2

if nums[mid] == target:

return mid
elif nums[mid] < target:

return binary_search(mid + 1, right)
else:

return binary_search(left, mid - 1)

return binary_search(®, len(nums) - 1)

def searchLeftBound(nums, target):

min

Find leftmost position where target can be inserted.

min

left, right = 0, len(nums)

while left < right:
mid = left + (right - left) // 2

if nums[mid] < target:
left = mid + 1
else:
right = mid

return left if left < len(nums) and nums[left] == target else -1

def searchRightBound(nums, target):

min

Find rightmost position where target can be inserted.

min

left, right = 0, len(nums)

while left < right:
mid = left + (right - left) // 2

if nums[mid] <= target:
left = mid + 1
else:
right = mid
return left - 1 if left > 0 and nums[left - 1] == target else -1

Test cases

test_cases = [
([-2, @, 3, 5, 9, 12], 9), # 4
([-1, o, 3, 5, 9, 121, 2), # -1
([51, 5), # 0
([1, 3, 5, 7, 9], 1), # 0
([1, 3, 5, 7, 9], 9) # 4

for nums, target in test_cases:

resultl = search(nums, target)

result2 searchRecursive(nums, target)

result3 searchLeftBound(nums, target)

result4 = searchRightBound(nums, target)

print(f"nums={nums}, target={target}")

print(f"Standard: {resultil}, Recursive: {result2}, Left: {result3}, Right:
{result4i\n")

X{EE = (Key Points)

1.i8538: 1eft <= right vs left < right
2. Gt R BEEGEHNE
3. TR LR, AiLRER

Problem 10: Reverse Linked List (Easy)

Problem Statement

Given the head of a singly linked list, reverse the list, and return the new
head.

Example 1:

Input: head = [1,2,3,4,5]
Output: [5,4,3,2,1]
Example 2:

Input: head = [1,2]
Output: [2,1]

Example 3:

Input: head = []

Output: []

Constraints:

- The number of nodes in the list is the range [0, 5000].
- -5000 <= Node.val <= 5000

R B ER (Solution Analysis)

XE—EZHNERIZETR, ZEXNIETHRERIER,

ERARE: - FERH=E: prey, current, next - BN REFHFERTIIEH HE
BIARE: - BAFNEREKE - ELIMIIEPRERE

Xt53:M (Code Implementation)

class ListNode:
def __init_ (self, val=0, next=None):
self.val = val
self.next = next

def to_list(self):
"""Convert linked list to Python list for easy display."""
result = []
current = self
while current:
result.append(current.val)
current = current.next
return result

def reverselList(head):

mirin

Reverse linked list iteratively.

Args:
head: ListNode - Head of the linked 1list

Returns:
ListNode - New head of reversed list
mirn
prev = None
current = head

while current:
next_temp = current.next # Store next node

current.next = prev # Reverse the link
prev = current # Move prev forward
current = next_temp # Move current forward

return prev # prev is the new head

def reverselListRecursive(head):

miin

Reverse linked 1list recursively.

mirin

Base case

if not head or not head.next:
return head

Recursively reverse the rest
new_head = reverseListRecursive(head.next)

Reverse current connection
head.next.next = head
head.next = None

return new_head

def reverseListStack(head):

miin

Reverse using stack (for educational purposes).

miin

if not head:
return None

stack = []

current = head

Push all nodes to stack

while current:
stack.append(current)
current = current.next

Pop and reconnect
new_head = stack.pop()
current = new_head

while stack:
current.next = stack.pop()
current = current.next

current.next = None
return new_head

Helper function to create linked 1ist

def

create_list(arr):
"""Create linked list from array."""
if not arr:

return None

head = ListNode(arr[0])

current = head

for val in arr[1:]:
current.next = ListNode(val)
current = current.next

return head

Test cases
test_cases = [

for

rll 2’ 3’ 4’ 5-|I # [514/3/2/1]
(1, 2], # [2,1]

[, # [

[1] # [1]

arr in test_cases:

Test iterative solution

headl = create_list(arr)

reversedl = reverselList(headl)

resultl = reversedl.to_list() if reversedl else []

Test recursive solution

head2 = create_list(arr)

reversed2 = reverselListRecursive(head2)

result2 = reversed2.to_list() if reversed2 else []

Test stack solution

head3 = create_list(arr)

reversed3 = reverselListStack(head3)

result3 = reversed3.to_list() if reversed3 else []

print(f"Original: {arr}")

print(f"Iterative: {resultl}, Recursive: {result2}, Stack:

{result3}\n")

X§E£ = (Key Points)

1. $5sHE(E: EMAIE=METTRISTH
2. AP L IEEHE TR TIIIE
3.IARFEM: TERMNBET RpERABIE

Problem 11: Move Zeroes (Easy)

Problem Statement

Given an integer array nums, move all 0's to the end of it while maintaining
the
relative order of the non-zero elements.

Note that you must do this in-place without making a copy of the array.
Example 1:

Input: nums = [0,1,0,3,12]

Output: [1,3,12,0,0]

Example 2:

Input: nums = [0]

Output: [0]

Constraints:

- 1 <= nums.length <= 1074
- -27A31 <= nums[i] <= 2731 - 1

R B IR (Solution Analysis)
XE—BELHNNIEHTE, ZTHANEMIRE

IUEHHRE: - EARIBIETT, BiEtHER T — M IFETRENZRENIE - RIsTHEH KX
H, BEFSTENSERTHUERR - RERFRUEEFT N0

BYiEl S Z:EE: O(n) RIS ZE: 0(1)

Xt53:M (Code Implementation)

def moveZeroes(nums):

min

Move all zeros to end while maintaining relative order.

Args:
nums: List[int] - Array to modify in-place
mirirn
Two pointers approach
slow = @ # Points to position for next non-zero element

Move all non-zero elements to front
for fast in range(len(nums)):
if nums[fast] != 0:
nums[slow] = nums[fast]
slow += 1

Fill remaining positions with zeros
while slow < len(nums):

nums[slow] = 0

slow += 1

def moveZeroesSwap(nums):

miin

Alternative approach using swapping.

min

slow = 0

for fast in range(len(nums)):
if nums[fast] != 0:
nums[slow], nums[fast] = nums[fast], nums[slow]
slow += 1

def moveZeroesOptimal(nums):

Most optimal approach - only swap when necessary.

miin

slow = 0

for fast in range(len(nums)):
if nums[fast] != 0O:

if slow != fast: # Only swap if positions are different
nums[slow], nums[fast] = nums[fast], nums[slow]
slow += 1

Test cases
test_cases = [

[0, 1, 0, 3, 12], # [1,3,12,0,0]
[et, # [0]

[1, 2, 3], # [1,2,3]

[(J 4 () 4]‘] 4 ;@f l-:l 4 (:)/ (j.]

(1, o, 2, 0, 3, 0, 4] # [1,2,3,4,0,0,0]

for nums in test_cases:
original = nums.copy()
moveZeroes(nums)
print(f"Original: {original} -> Result: {nums}")

X§E£ = (Key Points)

L. WEEEHRIS: (RISIETTRVRHENV A
2. [RHIEME: AERTIIN =B CREA
3. 1A RIFIFZTRBIRIBINF

Problem 12: Intersection of Two Arrays Il (Easy)

Problem Statement

Given two integer arrays numsl and nums2, return an array of their
intersection.

Each element in the result must appear as many times as it shows in both arrays
and you may return the result in any order.

Example 1:
Input: numsl = [1,2,2,1], nums2 = [2,2]
Output: [2,2]

Example 2:

Input: numsl = [4,9,5], nums2 = [9,4,9,8,4]
Output: [4,9]

Explanation: [9,4] is also accepted.
Constraints:

- 1 <= numsl.length, nums2.length <= 1000
- 0 <= numsl[i], nums2[i] <= 1000

R B IR (Solution Analysis)
Xe—EBEETRHFERNWSHIZAE,

IRERBE. - Rt —TMHEPES I TRIUR - BHS— M AE, NRTHEERARFTHE
SURRTFO0, MANERHBIR

HEF+IURTHRRE. - BRI IR - EAMEETHRTTR, BFNINALER

Xt53:M (Code Implementation)

from collections import Counter

def

def

def

intersect(numsl, nums2):

miin

Find intersection of two arrays with duplicates.

Args:
numsl: List[int] - First array
nums2: List[int] - Second array

Returns:
List[int] - Intersection with duplicates
Count elements in numsl
count = Counter(numsl)
result = []

Check each element in nums2
for num in nums2:
if count[num] > 0:
result.append(num)
count[num] -= 1

return result

intersectTwoPointers(numsl, nums2):

min

Two pointers approach after sorting.

miin

numsl.sort()
nums2.sort()

i=j=0
result = []

while i < len(numsl) and j < len(nums2):
if numsi[i] < nums2[j]:

i+=1

elif numsi[i] > nums2[j]:
j+=1

else:
result.append(numsi[i])
i+=1
j +=1

return result

intersectOptimized(numsl, nums2):

min

Optimized to use smaller array for counting.

min

Ensure numsl is the smaller array
if len(numsl) > len(nums2):
numsl, nums2 = nums2, numsl

count = Counter(nums1l)
result = []

for num in nums2:
if count[num] > O:
result.append(num)
count[num] -= 1

return result

Test cases
test_cases = [

(ra, 2, 2, 11, 12, 21), # [2,2]

([4, 9, 51, [9, 4, 9, 8, 4]), # [4,9] or [9,4]
([1, 2, 3], [4, 5, 6]), # []

({1, 11, [1, 1, 1]) # [1,1]

for nums1, nums2 in test_cases:
resultl = intersect(numsl.copy(), nums2.copy())
result2 intersectTwoPointers(numsl.copy(), nums2.copy())
result3 = intersectOptimized(numsl.copy(), nums2.copy())
print (f"numsi={nums1}, nums2={nums2}")
print(f"Counter: {resultl}, Two pointers: {result2}, Optimized:
{result3}\n")

X§#%E =2 (Key Points)

1. SRt (E Counters FH4E 1T TR IR
2. Wi HIF ERINUEFHEA
3. FiER b ERR N RA R TTITHER

Problem 13: Plus One (Easy)

Problem Statement

You are given a large integer represented as an integer array digits, where
each

digits[i] is the ith digit of the integer. The digits are ordered from most
significant to least significant in left-to-right order. The large integer does
not contain any leading zeros.

Increment the large integer by one and return the resulting array of digits.

Example 1:

Input: digits = [1,2,3]

Output: [1,2,4]

Explanation: The array represents the integer 123. Incrementing by one gives
123 + 1 = 124.

Example 2:

Input: digits = [4,3,2,1]

Output: [4,3,2,2]

Explanation: The array represents the integer 4321. Incrementing by one gives
4321 + 1 = 4322.

Example 3:

Input: digits = [9]

Output: [1,0]

Explanation: The array represents the integer 9. Incrementing by one gives 9 +
1 = 10.

Constraints:

- 1 <= digits.length <= 100

- 0 <= digits[i] <= 9

- digits does not contain any leading zeros except for the number 0 itself.

fERABER (Solution Analysis)
XE—EE EHAREM## AR E,

ZLBHE: - NEE—IFRAIERH - INRHFIO/NFI, BEEMLRE - R HFUZ,
TROHYUEAIEHAL - NRFAIB AR, FEERAEAMML

Xt53:M (Code Implementation)

def plusOne(digits):

miin

Add one to number represented as digit array.

Args:
digits: List[int] - Array representing a number

Returns:
List[int] - Result after adding one
Process from right to left
for i in range(len(digits) - 1, -1, -1):
if digits[i] < 9:
digits[i] += 1
return digits
digits[i] = ©

If we reach here, all digits were 9
return [1] + digits

def plusOneRecursive(digits):

miin

Recursive approach for plus one.
def add_carry(index):
if index < 0:
return [1] # All digits were 9

if digits[index] < 9:
digits[index] += 1
return digits
else:
digits[index] = 0
return add_carry(index - 1)

return add_carry(len(digits) - 1)

def plusOneString(digits):
Convert to string, add one, convert back (for comparison).
Note: This approach may not work for very large numbers.
Convert to integer
num = int(''.join(map(str, digits)))
Add one
num += 1
Convert back to digit array
return [int(d) for d in str(num)]

Test cases
test_cases = [

(1, 2, 3], # [1,2,4]
r4, 3, 2, 11, #[4,3,2,2]
(o1, #[1,0]

(9, 9, 9], #[1,0,0,0]
1, 9, 91, #[2,0,0]

[0] # [1]

for digits in test_cases:
original = digits.copy()

resultl = plusOne(digits.copy())
result2 = plusOneRecursive(digits.copy())
result3 = plusOneString(digits.copy())

print(f"Original: {original}")
print(f"Iterative: {resultl}, Recursive: {result2}, String: {result3}\n")

XK{EE = (Key Points)
1. (IR IE AN RS F INARY (1L
2. REH: £ HMNFHRIE
3. BB E: MBI ERNBH B

Problem 14: Single Number (Easy)

Problem Statement

Given a non-empty array of integers nums, every element appears twice except
for
one. Find that single one.

You must implement a solution with a linear runtime complexity and use only
constant extra space.

Example 1:

Input: nums = [2,2,1]
Output: 1

Example 2:

Input: nums = [4,1,2,1,2]
Output: 4

Example 3:

Input: nums = [1]

Output: 1

Constraints:

- 1 <= nums.length <= 3 * 1074

- -3 * 10M4 <= nums[i] <= 3 * 1074

- Each element in the array appears twice except for one element which appears
only once.

fRRARBER (Solution Analysis)
Xe—EBLfHNMLEETE, ZEIIXORIEZEIVIERRE.,

XORtERi: -a ra =0 (EAHSEHERHEN0) -aro0=a (EAHRS0RHINE
) - XOR#EMEME AT

BB - BArERFHITXOREE - HRANBFSAEREENO - RER THIME R H
P—RBVERF

Xt53:M (Code Implementation)

def singleNumber (nums):

def

def

def

min

Find single number using XOR operation.

Args:
nums: List[int] - Array with one unique element

Returns:
int - The single number
mirin
result = 0
for num in nums:
result A= num
return result

singleNumberFunctional(nums):

mirn

Functional programming approach using reduce.

mirn

from functools import reduce
import operator
return reduce(operator.xor, nums, 0)

singleNumberSet(nums):

min

Using set for comparison (uses 0(n) space).

min

return 2 * sum(set(nums)) - sum(nums)

singleNumberMath(nums):

min

Mathematical approach using sum.

miin

unique_nums = set(nums)
return 2 * sum(unique_nums) - sum(nums)

Demonstration of XOR properties

def

demonstrate_xor():

mirrn

Demonstrate XOR properties for educational purposes.

miin

print("XOR Properties Demonstration:")

print(f"5 A 5 {5 A~ 5}") # o0

print(f"7 A 0 7 N0} #7

print(f"3 A 5 {3A5A3}") #5

print(f"1 A 2 2 A1 ={1ArA2AN3A2ANA1}
print()

> > 01

{
3
3

>l

Test cases
test_cases = [

]

[2, 2, 117,

[‘1 4 :L 4 :2 4 j‘l ;2] 4

(11,

[.7 4 :3, -7] 4

(1, 2, 3, 4, 1, 2, 3]

H oW W KW
N WR AR

demonstrate_xor ()

3

for nums in test_cases:

resultl = singleNumber (nums)

result2 = singleNumberFunctional(nums)
result3 = singleNumberSet(nums)
result4 = singleNumberMath(nums)

print(f"nums={nums}")
print(f"XOR: {resultl}, Functional: {result2}, Set: {result3}, Math:
{result4}i\n")

*§EE = (Key Points)

1. (IiEH: IEFEXORRIERY BTN A
2. $F R MR BF R R BRRIPER
3. DEERE: O(1)=RINEEY

Problem 15: Happy Number (Easy)

Problem Statement

Write an algorithm to determine if a number n is happy.

A happy number is a number defined by the following process:

- Starting with any positive integer, replace the number by the sum of the
squares of its digits.

- Repeat the process until the number equals 1 (where it will stay), or it
loops endlessly in a cycle which does not include 1.

- Those numbers for which this process ends in 1 are happy.

Return true if n is a happy number, and false if it is not.

Example 1:
Input: n = 19
Output: true
Explanation:

12 + 92 82

B2 <+ 2% 68

62 + 82 100

12 + 02 02 = 1

+ 0o

N

Example
Input: n = 2
Output: false

Constraints:
-1 <=n«<= 2731 - 1

fRRARBER (Solution Analysis)
Xe—BEEREFMEMNEE, JUFERIRHESHIRISISHRER,

BEESHE. -THAESICRELHIINHFE - IREMEE, HEEHFNEF, &[O
false - a0RFA1, R[Eltrue

RIGIEEHIRE . - KMTRNBERPRVIF - RISHEBRITERR, BETSRHE—X -1
REW, RiEEHZAEE

Xt53:M (Code Implementation)

def isHappy(n):

min

Check if number is happy using set to detect cycle.

Args:
n: int - Number to check

Returns:
bool - True if happy, False otherwise
mirin
def get_sum_of_squares(num):
"""Calculate sum of squares of digits."""
total = 0
while num > 0:
digit = num % 10
total += digit * digit
num //= 10
return total

seen = set()

while n !'= 1 and n not in seen:
seen.add(n)
n = get_sum_of_squares(n)

return n == 1

def isHappyTwoPointers(n):

miin

Check if number 1is happy using two pointers (Floyd's cycle detection).
def get_sum_of_squares(num):
total = 0
while num > 0:
digit = num % 10
total += digit * digit
num //= 10
return total

slow = fast = n
while True:

slow
fast

= get_sum_of_squares(slow)
= get_sum_of_squares(get_sum_of_squares(fast))
if fast == 1:
return True
if slow == fast:
return False

def isHappyRecursive(n, seen=None):

min

Recursive approach with memoization.

miin

if seen is None:
seen = set()

if n ==

return True
if n in seen:
return False

seen.add(n)

Calculate sum of squares
total = 0
while n > 0:
digit = n % 10
total += digit * digit
n //= 10

return isHappyRecursive(total, seen)

def get_sum_of_squares_string(n):

mirin

Alternative implementation using string conversion.

mirin

return sum(int(digit) ** 2 for digit in str(n))

Test cases with step-by-step demonstration
def demonstrate_happy_number(n):

miin

Demonstrate the happy number calculation process.
print(f"Checking if {n} is happy:")

seen = set()

original_n = n

while n != 1 and n not in seen:
seen.add(n)
digits = [int(d) for d in str(n)]
squares = [d**2 for d in digits]
new_n = sum(squares)
print(f"{n} -> {' + '.join(f'{d}2' for d in digits)} = {' +
'.join(map(str, squares))} = {new_n}")
n = new_n

if n ==
print(f"v {original_n} is happy!")
return True
else:
print(f"x {original_n} enters cycle at {n}")
return False

Test cases
test_cases = [19, 2, 7, 10, 1, 23]

for n in test_cases:

resultl = isHappy(n)

result2 isHappyTwoPointers(n)

result3 = isHappyRecursive(n)

print(f"n={n} -> Set: {resultl}, Two pointers: {result2}, Recursive:
{result3}")

print("\nDetailed demonstration:")
demonstrate_happy_number (19)
print()
demonstrate_happy_number(2)

XK{EE 3 (Key Points)
1. RN RS ST IRBIEFH L MTEIR
2. BF R T ERUHFRIT S
3. BEMW: FRAZENTRIERENTLL

Problem 16: Count Primes (Medium)

Problem Statement

Given an integer n, return the number of prime numbers that are less than n.

Example 1:

Input: n = 10

Output: 4

Explanation: There are 4 prime numbers less than 10, they are 2, 3, 5, 7.

Example 2:
Input: n =0
Output: ©
Example 3:
Input: n =1
Output: ©

Constraints:

- 0 <=n<=5* 10M6
R B IR (Solution Analysis)
XE—ELHIERhHITEF R iF £ (Sieve of Eratosthenes)#iH.

IhiftiRSETRIE. 1. 1B —NMe/REA, WIRMFIERAREL 2. M2FFE, BE M HREH
BEIFCAN G 3. EEHEIVETFIE T 4. St FIRBIGER K

fte: - AR2REE n- B @ (R72) - ERMRERILZE

Xt33:M (Code Implementation)

def countPrimes(n):

min

Count prime numbers less than n using Sieve of Eratosthenes.

Args:
n: int - Upper bound (exclusive)

Returns:

int - Number of primes less than n
miin
if n <= 2:

return 0

Initialize boolean array
is_prime = [True] * n
is_prime[0@] = is_prime[1l] = False # 0 and 1 are not prime

Sieve of Eratosthenes
for i in range(2, int(n**0.5) + 1):
if is_prime[i]:
Mark all multiples of i as composite
for j in range(i*i, n, 1i):
is_prime[j] = False

Count primes
return sum(is_prime)

def countPrimesOptimized(n):

miin

Optimized version that skips even numbers.

min

if n <= 2:
return 0
if n <= 3:

return 1 # Only 2 is prime

Only track odd numbers (except 2)
Index 1 represents number 2*i+3
size = (n - 3) // 2 + 1

is_prime = [True] * size

Sieve for odd numbers only
for i in range(int((n**0.5 - 3) // 2) + 1):
if is_prime[i]:
The number represented by index i is 2*i+3
num = 2 * i + 3
Mark multiples starting from num/2
start = (num * num - 3) // 2
for j in range(start, size, num):
is_prime[j] = False

Count primes: 2 + odd primes
return 1 + sum(is_prime)

def countPrimesNaive(n):

miin

Naive approach for comparison (inefficient for large n).

mirin

def is_prime(num):
if num < 2:
return False
for i in range(2, int(num**@.5) + 1):
if num % i == 0O:
return False
return True

return sum(1 for i in range(2, n) if is_prime(i))

def getPrimes(n):

miin

Return 1list of all primes less than n.

min

if n <= 2:
return []

is_prime = [True] * n
is_prime[0] = is_prime[1l] = False

for i in range(2, int(n**0.5) + 1):
if is_prime[i]:
for j in range(i*i, n, 1i):
is_prime[j] = False

return [1 for i in range(n) if is_prime[i]]

Performance comparison
import time

def benchmark_methods(n):

miin

Compare performance of different methods.

miin

methods = [
("Sieve", countPrimes),
("Optimized", countPrimesOptimized),

]

if n <= 1000: # Only test naive method for small n
methods.append(('"Naive", countPrimesNaive))

results = {}
for name, method in methods:
start_time = time.time()
result = method(n)
end_time = time.time()
results[name] = (result, end_time - start_time)
print(f"{name}: {result} primes, {end_time - start_time:.6f} seconds")

return results

Test cases
test_cases = [0, 1, 2, 3, 10, 100, 1000]

for n in test_cases:
resultl = countPrimes(n)
result2 = countPrimesOptimized(n)
primes = getPrimes(n) if n <= 30 else []
print(f"n={n} -> Sieve: {resultl}, Optimized: {result2}")
if primes:
print(f"Primes: {primes}")

print()
Performance benchmark

print("Performance Benchmark (n=10000):")
benchmark_methods(10000)

XK{EE 3 (Key Points)

1. 3&BHEES B i IRAR T A0 R IB A0 So I
2. BUEME: RIREERY n, BLI@EBERK
3. BiEIE ZE: O(n log log n) vs O(ny n)

Problem 17: Power of Three (Easy)

Problem Statement

Given an integer n, return true if it is a power of three. Otherwise, return
false.

An integer n is a power of three, if there exists an integer x such that n ==
3AX,

Example 1:

Input: n = 27

Output: true
Explanation: 27 = 373

Example 2:

Input: n = 0

Output: false

Explanation: There is no x where 37X

1
(o]

Example 3:

Input: n = -1

Output: false

Explanation: There is no x where 3Ax = (-1).

constraints:
- -2N31 <= n <= 2/A31 - 1

fRBBER (Solution Analysis)
XE—EEEHFENBFNTE, EZMEE

BIFBRIE: - FERERLA3, RERSR

/
anp

EEPR - RIRERNIZN]

BIIRE. - BINEN/3RTBN3NE

WERE. - TATTERN, BAMBHMERE3MN9=1162261467 - IRnE3NE, AR K
3B IZRER N EERR

Xt53:M (Code Implementation)

import math

def isPowerOfThree(n):

miin

Check if number is power of three using iterative division.

Args:
n: int - Number to check

Returns:
bool - True if power of three, False otherwise

mirin

if n <= 0:
return False

while n % 3 ==
n//=3

return n ==

def isPowerOfThreeRecursive(n):

miin

Recursive approach to check power of three.

miin

if n <= 0:
return False
if n == 1:

return True
ifn% 3 !=0:
return False

return isPowerOfThreeRecursive(n // 3)

def isPowerOfThreeMath(n):

miin

Mathematical approach using largest power of 3 in 32-bit range.

mirin
if n <= 0:
return False

Largest power of 3 in 32-bit signed integer range
max_power_of_3 = 3 ** 19 # 1162261467

return max_power_of_3 % n ==

def isPowerOfThreeLog(n):

miin

Using logarithm to check (may have precision issues).

miin

if n <= 0:
return False

Calculate log_3(n) = log(n) / log(3)
log_result = math.log10(n) / math.logl0(3)

Check if result is close to an integer
return abs(log_result - round(log_result)) < 1le-10

def isPowerOfThreeString(n):

mirn

Convert to base 3 and check pattern (educational purpose).
miin
if n <= 0:

return False

Convert to base 3

base3 = ""

temp = n

while temp > 0:
base3 = str(temp % 3) + base3
temp //= 3

Power of 3 in base 3 should be "1" followed by zeros
return base3[0] == '1' and all(c == '0@' for c¢ in base3[1:])

def generatePowersOfThree(max_val):

miin

Generate all powers of 3 up to max_val.
powers = []
power = 1
while power <= max_val:
powers.append(power)
power *= 3
return powers

Test cases
test_cases = [27, O, -1, 1, 9, 45, 81, 243, 244]

Generate powers of 3 for reference
powers_of_3 = generatePowersOfThree(10000)
print(f"Powers of 3 up to 10000: {powers_of_3}\n")

for n in test_cases:

resultl = isPowerOfThree(n)

result2 = isPowerOfThreeRecursive(n)
result3 = isPowerOfThreeMath(n)
result4 = isPowerOfThreeLog(n)
result5 = isPowerOfThreeString(n)

print(f"n={n}")

print(f"Iterative: {resultl}, Recursive: {result2}, Math: {result3}")
print(f"Log: {result4}, String: {result5}")

print(f"Expected: {n in powers_of_3}\n")

Demonstrate base 3 conversion
print("Base 3 representations:")
for power in [1, 3, 9, 27, 81]:
base3 = ""
temp = power
while temp > 0:
base3 = str(temp % 3) + base3
temp //= 3
print(f"{power} in base 3: {base3}")

X§E£ = (Key Points)

1. ZFfEE: B, &3, BF. WERERELE
2. 18R FM: ¥k, 0. 1BV AR EE
3. BNFE MR RSB F T

Problem 18: Fizz Buzz (Easy)

Problem Statement

Given an integer n, return a string array answer (1-indexed) where:

- answer[i] == "FizzBuzz" if i is divisible by 3 and 5.

- answer[i] == "Fizz" if 1 is divisible by 3.

- answer[i] == "Buzz" if i is divisible by 5.

- answer[i] == i (as a string) if none of the above conditions are true.
Example 1:

Input: n = 3

Output: ["1",6"2", "Fizz"]

Example 2:

Input: n =5

output: ["1", ll2l|, "FiZZ", ”4”["BUZZ"]

Example 3:

Input: n = 15

Output:

[lllll, ll2ll, "FiZZ”, II4II, "BUZZ", "FiZZ", Il7l|, Il8ll, "FiZZ", "BUZZ", II11II, "FiZZ", ll13ll, II14II, "Fi

Constraints:
-1 <=n <= 10/N4

fRRABEE (Solution Analysis)
XE—EBLHNEHHETE, ENEREERZSMEMT BIAE.
HiifE: -BH1EIn, M MFRERREMY - ZMELREIN N FR S

(RILREE. - ERFNRIHERRZRFMHIRT - ERARGROES P FH

Xt53:M (Code Implementation)

def fizzBuzz(n):

miin

Generate FizzBuzz sequence up to n.

Args:
n: int - Upper bound (inclusive)

Returns:
List[str] - FizzBuzz sequence

min

result = []

for i in range(1, n + 1):

if i % 15 == 0: # Divisible by both 3 and 5
result.append("FizzBuzz")

elif i % 3 == 0O:
result.append("Fizz")

elif i % 5 == 0:
result.append("Buzz")

else:
result.append(str(i))

return result

def fizzBuzzStringConcat(n):

min

Using string concatenation approach.

miin

result = []

for i in range(1, n + 1):
output = ""

if i % 3 == 0:
output += "Fizz"

if i %5 == 0:
output += "Buzz"

if not output:
output = str(1i)

result.append(output)
return result

def fizzBuzzMapping(n):

miin

Using mapping for extensibility.
Mapping of divisor to string
mappings = {3: "Fizz", 5: "Buzz"}
result = []

for i in range(1, n + 1):
output = ""

for divisor, word in mappings.items():
if i % divisor ==

output += word

if not output:
output = str(1i)

result.append(output)
return result

def fizzBuzzExtended(n, rules=None):

miin

Extended version that accepts custom rules.

Args:

n: int - Upper bound

rules: dict - Custom divisor to string mapping
if rules is None:

rules = {3: "Fizz", 5: "Buzz"}

result = []

for i in range(1, n + 1):
output = ""

Sort by divisor to ensure consistent order
for divisor in sorted(rules.keys()):
if i % divisor ==
output += rules[divisor]

if not output:
output = str(i)

result.append(output)
return result
def fizzBuzzOneLiner(n):

mirin

One-liner implementation using list comprehension.

miin

return [
"FizzBuzz" if i % 15 == 0 else
"Fizz" if i % 3 == else
"Buzz" if i % 5 == else
str(i)

for i in range(1, n + 1)

]

def fizzBuzzCounter(n):

miin

Using counter approach to avoid modulo operations.
result = []
fizz_count = buzz_count = 0

for i in range(1, n + 1):
fizz_count += 1
buzz_count += 1
output = ""

if fizz_count ==

output += "Fizz"
fizz_count = 0

if buzz_count ==
output += "Buzz"
buzz_count = 0

if not output:
output = str(1i)

result.append(output)
return result

Test cases
test_cases = [3, 5, 15, 20]

for n in test_cases:

resultl = fizzBuzz(n)

result2 = fizzBuzzStringConcat(n)
result3 = fizzBuzzMapping(n)
result4 = fizzBuzzOnelLiner(n)
result5 = fizzBuzzCounter(n)

print(f"n={n}")
print(f"Basic: {resulti}")
print(f"All methods produce same result: {resultl == result2 == result3 ==
result4 == result5}")
print()
Extended example with custom rules
print("Extended FizzBuzz with custom rules:")
custom_rules = {3: "Fizz", 5: "Buzz", 7: "Bang"}

extended_result = fizzBuzzExtended(21, custom_rules)
print(f"with rules {custom_rules}: {extended_result}")

X{EE = (Key Points)
1. FHFIBT: ERMIEZ N R AR
2. X85 Y B i+ 5 T BRAELE
3. e BREESNRIERE

Problem 19: Excel Sheet Column Number (Easy)

Problem Statement

Given a string columnTitle that represents the column title as appears in an
Excel
sheet, return its corresponding column number.

For example:

O W >
[
vV V V
w N R

Z -> 26
AA -> 27
AB -> 28

Example 1:
Input: columnTitle = "A"
Output: 1

Example 2:
Input: columnTitle = "AB"
Output: 28

Example 3:
Input: columnTitle = "ZzZY"
Output: 701

Constraints:
- 1 <= columnTitle.length <= 7

- columnTitle consists only of uppercase English letters.
- columnTitle is in the range ["A", "FXSHRXW"].

fERABER (Solution Analysis)
X —EHFEIREE, XUTF26:8HI51E, EEFHL.

BOBH: - ExcelFISB—MIHABI26#FI RS - 260, MA(1)ZEIZ(26) - 8—IRINER
2697 R

BEPRE. 1. MEIELESNFR 2. BEREIRANEF (A1, B=2, ..., Z=26) 3. FelA
JTRZAIAYEE (2670, 2611, 2612, ...) 4. BENNEEImAR L

Xt53:M (Code Implementation)

def titleToNumber(columnTitle):

def

def

def

miin

Convert Excel column title to number.

Args:
columnTitle: str - Excel column title

Returns:
int - Corresponding column number

min

result = 0

for char in columnTitle:
Convert character to number (A=1, B=2, ..., Z=26)
digit = ord(char) - ord('A"'") + 1
Multiply previous result by 26 and add current digit
result = result * 26 + digit

return result

titleToNumberExplicit(columnTitle):

miin

More explicit version showing the base-26 conversion.

miin

result = 0
length = len(columnTitle)

for i, char in enumerate(columnTitle):
digit = ord(char) - ord('A') + 1
power = length - i - 1
result += digit * (26 ** power)

return result

titleToNumberRecursive(columnTitle):

mirin

Recursive approach.

mirn

if not columnTitle:
return 0

Process last character
last_char = columnTitle[-1]
last_digit = ord(last_char) - ord('A') + 1

Recursively process remaining characters
remaining = titleToNumberRecursive(columnTitle[:-1])

return remaining * 26 + last_digit

numberToTitle(columnNumber):

min

Reverse operation: convert number to Excel column title.

mirin

result = ""

while columnNumber > 0:
Adjust for 1-based indexing

columnNumber -= 1

remainder = columnNumber % 26

result = chr(ord('A') + remainder) + result
columnNumber //= 26

return result

def demonstrateConversion(columnTitle):

miin

Demonstrate step-by-step conversion process.

miin

print(f"Converting '{columnTitle}' to number:")
result = 0

for i, char in enumerate(columnTitle):
digit = ord(char) - ord('A"'") + 1
power = len(columnTitle) - i - 1
contribution = digit * (26 ** power)
result += contribution

print(f" {char} = {digit}, position {power}: {digit} x 26/{power} =
{contribution}")

print(f" Total: {result}")
return result

Test cases
test_cases = ["A", "AB", "ZY", "AAA", "FXSHRXW"]

for title in test_cases:
resultl = titleToNumber(title)
result2 = titleToNumberExplicit(title)
result3 = titleToNumberRecursive(title)

Verify reverse conversion
reverse = numberToTitle(resultl)

print(f"Title: '{title}'")

print(f"Methods: {resultil}, {result2}, {result3} (all same: {resultl ==
result2 == result3})")

print(f"Reverse: {resultl} -> '{reverse}' (correct: {reverse == title})")

print()

Detailed demonstration
print("Detailed conversion process:")
demonstrateConversion("zY")

print()

Show pattern for first few columns
print("Excel column pattern:")
for i in range(1, 30):
title = numberToTitle(1)
print(f"{i:2d} -> {title}")

X§EE = (Key Points)
1. HHIEEIR: IRARF TR 261 FI R G

2. FRIIR: ASCIIIEFEIRH F RTBRET
3. B IRARIE AR AR X R

Problem 20: Majority Element (Easy)

Problem Statement

Given an array nums of size n, return the majority element.

The majority element is the element that appears more than |[n / 2] times. You
may
assume that the majority element always exists in the array.

Example 1:
Input: nums
Output: 3

[3,2,3]

Example 2:
Input: nums
Output: 2

[2/ 2/ 1/ 1/ 1’ 2/ 2]

Constraints:

- n == nums.length

-1 <=n<=5* 10N

- -1079 <= nums[i] <= 1079
R B E% (Solution Analysis)
XE—ELHIBoyer-MoorelREREHI R, BEMiEE,

Boyer-Moorei@EH%: - #HiP—MEREENITEES - BEIBEETRITHE+L, FTRATET
HEE-1 - TSR N0 EHRIEE - REMNREEMEZHRTEH

Hihf#&: - laAmRIGIHIUR - BiF RSP - 588%

Xt53:M (Code Implementation)

from collections import Counter

def

def

def

def

majorityElement(nums):

miin

Find majority element using Boyer-Moore voting algorithm.

Args:
nums: List[int] - Array of integers

Returns:
int - The majority element

mirin

candidate = None
count = 0

Phase 1: Find candidate
for num in nums:

if count == 0:
candidate = num
count += 1 if num == candidate else -1

Phase 2: Verify candidate (not needed given problem constraints)
count = sum(1 for num in nums if num == candidate)
return candidate if count > len(nums) // 2 else None

return candidate

majorityElementHashMap(nums):

miin

Using hash map to count frequencies.
mirin

count = Counter(nums)

return count.most_common(1)[0][0]

majorityElementSorting(nums):

miin

Sort and return middle element.
miin

nums.sort()

return nums[len(nums) // 2]

majorityElementDivideConquer (nums):

miin

Divide and conquer approach.
def majority_rec(left, right):
Base case
if left == right:
return nums[left]

Divide

mid = (left + right) // 2

left_majority = majority_rec(left, mid)
right_majority = majority_rec(mid + 1, right)

Conquer
if left_majority == right_majority:
return left_majority

Count occurrences in current range
left_count = sum(1 for i in range(left, right + 1) if nums[i] ==

left_majority)

right_count = sum(1 for i in range(left, right + 1) if nums[i] ==

right_majority)

def

return left_majority if left_count > right_count else right_majority
return majority_rec(0, len(nums) - 1)

demonstratevoting(nums):

miin

Demonstrate Boyer-Moore voting algorithm step by step.

min

print(f"Demonstrating voting algorithm on {nums}:")
candidate = None
count = 0

for i, num in enumerate(nums):
old_candidate, old_count = candidate, count

if count ==
candidate = num
count += 1 if num == candidate else -1

print(f"Step {i+1}: num={num}, candidate: {old_candidate}->{candidate},

count: {old_count}->{count}")

print(f"Final candidate: {candidate}\n")
return candidate

Test cases
test_cases = [

for

[:3 4 :2 4 :3] 4

[:2 4 :2 4 :L 4 j‘l j‘l ;2 4 :Z] 4
(11,

[j'I j'I j'I ;Z 4 ;Z] 4

[6, 5, 5]

nums in test_cases:

resultl = majorityElement(nums)

result2 = majorityElementHashMap(nums)

result3 = majorityElementSorting(nums.copy()) # Copy because sorting

modifies array

result4 = majorityElementDivideConquer (nums)

print(f"nums={nums}")
print(f"Voting: {resultl}, HashMap: {result2}, Sorting: {result3}, D&C:

{result4}")

print(f"All same: {resultl == result2 == result3 == result4}")
print()

Detailed demonstration
print("Detailed voting algorithm demonstration:")
demonstratevVoting([2, 2, 1, 1, 1, 2, 2])

Performance analysis
import time

def benchmark_methods(nums):

mirn

Compare performance of different methods.
methods = [
("Boyer-Moore", majorityElement),
("HashMap", majorityElementHashMap),
("Sorting", lambda x: majorityElementSorting(x.copy())),
("Divide & Conquer", majorityElementDivideConquer)

for name, method in methods:
start_time = time.time()
result = method(nums)
end_time = time.time()
print(f"{name}: {result}, {end_time - start_time:.6f} seconds")

Large test case for performance comparison
large_nums = [1] * 25000 + [2] * 24999

print(f"\nPerformance benchmark (array size: {len(large_nums)}):")
benchmark_methods(large_nums)

X§#%E =2 (Key Points)
1. Boyer-Moore&i#: IEfRIG EE AR RIEF LI
2. ZThiRE: BIERERENMIR S
3. HEZESERE: EMFENEREDT

